paprica.viewer
Module containing classes and functions relative to Viewing.
By using this code you agree to the terms of the software license agreement.
© Copyright 2020 Wyss Center for Bio and Neuro Engineering – All rights reserved
- paprica.viewer.apr_to_napari_Image(apr: _pyaprwrapper.data_containers.APR, parts: (<class '_pyaprwrapper.data_containers.ShortParticles'>, <class '_pyaprwrapper.data_containers.FloatParticles'>), mode: str = 'constant', level_delta: int = 0, **kwargs)[source]
Construct a napari ‘Image’ layer from an APR. Pixel values are reconstructed on the fly via the APRSlicer class.
- Parameters
apr (pyapr.APR) – Input APR data structure
parts (pyapr.FloatParticles or pyapr.ShortParticles) – Input particle intensities
mode (str (default: 'constant')) –
- Interpolation mode to reconstruct pixel values. Supported values are
constant: piecewise constant interpolation smooth: smooth interpolation (via level-adaptive separable smoothing). Note: significantly slower than constant. level: interpolate the particle levels to the pixels
level_delta (int) – Sets the resolution of the reconstruction. The size of the image domain is multiplied by a factor of 2**level_delta. Thus, a value of 0 corresponds to the original pixel image resolution, -1 halves the resolution and +1 doubles it. (default: 0)
- Returns
out – An Image layer of the APR that can be viewed in napari.
- Return type
napari.layers.Image
- paprica.viewer.apr_to_napari_Labels(apr: _pyaprwrapper.data_containers.APR, parts: _pyaprwrapper.data_containers.ShortParticles, mode: str = 'constant', level_delta: int = 0, **kwargs)[source]
Construct a napari ‘Layers’ layer from an APR. Pixel values are reconstructed on the fly via the APRSlicer class.
- Parameters
apr (pyapr.APR) – Input APR data structure
parts (pyapr.FloatParticles or pyapr.ShortParticles) – Input particle intensities
mode (str (default: 'constant')) –
- Interpolation mode to reconstruct pixel values. Supported values are
constant: piecewise constant interpolation smooth: smooth interpolation (via level-adaptive separable smoothing). Note: significantly slower than constant. level: interpolate the particle levels to the pixels
level_delta (int) – Sets the resolution of the reconstruction. The size of the image domain is multiplied by a factor of 2**level_delta. Thus, a value of 0 corresponds to the original pixel image resolution, -1 halves the resolution and +1 doubles it. (default: 0)
- Returns
out – A Labels layer of the APR that can be viewed in napari.
- Return type
napari.layers.Image
- paprica.viewer.compare_stitching(stitcher1, stitcher2, loc=None, n_proj=0, dim=0, downsample=2, color=False, rel_map=False)[source]
Compare two stitching at a given position loc for a given dimension dim.
- Parameters
stitcher1 (tileStitcher) – stitcher object 1
stitcher2 (tileStitcher) – stitcher object 2
loc (int) – position in the given dimension
dim (int) – dimension to use for comparison
n_proj (int) – number of plane to perform the max-projection
downsample (int) – downsampling factor for the reconstruction
color (bool) – option to display in color
rel_map (bool) – overlay reliability map on the reconstructed data
- Return type
None
- paprica.viewer.display_apr(apr, parts, **kwargs)[source]
Display an APR using Napari from previously loaded data.
- Parameters
apr (pyapr.APR) – Input APR data structure
parts (pyapr.FloatParticles, pyapr.ShortParticles) – Input particle intensities
kwargs (dict) – optional parameters for Napari
- Return type
None
- paprica.viewer.display_apr_from_path(path, **kwargs)[source]
Display an APR using Napari from a filepath.
- Parameters
path (string) – path to APR to be displayed
kwargs (dict) – optional parameters for Napari
- Return type
None
- paprica.viewer.display_heatmap(heatmap, atlas=None, data=None, log=False)[source]
Display a heatmap (e.g. cell density) that can be overlaid on intensity data and atlas.
- Parameters
heatmap (ndarray) – array containing the heatmap to be displayed
atlas (ndarray) – array containing the atlas which will be automatically scaled to the heatmap
data (ndarray) – array containing the data.
log (bool) – plot in logscale (only used for 2D).
- Return type
None
- paprica.viewer.display_layers(layers)[source]
Display a list of layers using Napari.
- Parameters
layers (list[napari.Layer]) – list of layers to display
- Returns
viewer – napari viewer.
- Return type
napari.Viewer
- paprica.viewer.display_layers_pyramidal(layers, level_delta)[source]
Display a list of layers using Napari.
- Parameters
layers (list[napari.Layer]) – list of layers to display
- Returns
viewer – napari viewer.
- Return type
napari.Viewer
- paprica.viewer.display_segmentation(apr, parts, mask, pyramidal=True, **kwargs)[source]
This function displays an image and its associated segmentation map. It uses napari to lazily generate the pixel data from APR on the fly.
- Parameters
apr (pyapr.APR) – apr object
parts (pyapr.ParticleData) – particle object representing the image
mask (pyapr.ParticleData) – particle object representing the segmentation mask/connected component
- Return type
None
- paprica.viewer.reconstruct_colored_projection(apr, parts, loc=None, dim=0, n_proj=0, downsample=1, threshold=None, plot=True)[source]
Compare two stitching at a given position loc for a given dimension dim.
- Parameters
apr (pyapr.APR) – apr tree object
parts (pyapr.ParticleData) – apr particles
loc (int) – position in the given dimension
dim (int) – dimension to use for comparison
n_proj (int) – number of plane to perform the max-projection
downsample (int) – downsampling factor for the reconstruction
color (bool) – option to display in color
rel_map (bool) – overlay reliability map on the reconstructed data
- Return type
None
- class paprica.viewer.tileViewer(tiles, database, segmentation: bool = False, cells=None, atlaser=None)[source]
Bases:
object
Class to display the registration and segmentation using Napari.
- __init__(tiles, database, segmentation: bool = False, cells=None, atlaser=None)[source]
- Parameters
tiles (tileParser) – tileParser object containing the dataset to be displayed.
database ((pd.Dataframe, string, tileStitcher)) – database containing the tile positions.
segmentation (bool) – option to also display the segmentation (connected component) data.
cells (ndarray) – cells center to be displayed.
atlaser (tileAtlaser) – tileAtlaser object containing the Atlas to be displayed.
- check_stitching(downsample=8, color=False, **kwargs)[source]
Function to display the stitched dataset using napari.
- Parameters
downsample (int) – downsampling parameter for APRSlicer (1: full resolution, 2: 2x downsampling, 4: 4x downsampling..etc)
color (bool) – option to display in color
kwargs (dict) – dictionary passed to Napari for custom option
- Return type
None
- display_all_tiles(pyramidal=True, downsample=1, color=False, **kwargs)[source]
Display all parsed tiles.
- Parameters
pyramidal (bool) – option to have a slider that controls the displayed resolution
downsample (int) – downsampling parameter for APRSlicer (1: full resolution, 2: 2x downsampling, 4: 4x downsampling..etc)
kwargs (dict) – dictionary passed to Napari for custom option
- Return type
None
- display_tiles(coords, pyramidal=True, downsample=1, color=False, **kwargs)[source]
Display tiles at position coords.
- Parameters
coords (list) – list of tuples (row, col) containing the tile coordinate to display.
downsample (int) – downsampling parameter for APRSlicer (1: full resolution, 2: 2x downsampling, 4: 4x downsampling..etc)
kwargs (dict) – dictionary passed to Napari for custom option
color (bool) – option to display in color
- Return type
None
- get_layers_all_tiles(downsample=1, **kwargs)[source]
Display all parsed tiles.
- Parameters
downsample (int) – downsampling parameter for APRSlicer (1: full resolution, 2: 2x downsampling, 4: 4x downsampling..etc)
kwargs (dict) – dictionary passed to Napari for custom option
- Returns
layers – list of layers to be displayed by Napari
- Return type
list[napari.Layer]